p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.455C23, C23.696C24, C22.3592- (1+4), C22.4692+ (1+4), C23.4Q8⋊62C2, C23.102(C4○D4), (C2×C42).112C22, (C22×C4).606C23, (C23×C4).176C22, C23.8Q8⋊139C2, C23.11D4⋊121C2, C23.10D4.67C2, C23.23D4.76C2, (C22×D4).284C22, C24.C22⋊172C2, C24.3C22.76C2, C23.63C23⋊191C2, C23.65C23⋊157C2, C23.83C23⋊126C2, C2.37(C22.54C24), C2.C42.400C22, C2.121(C22.45C24), C2.43(C22.53C24), C2.114(C22.33C24), C2.118(C22.47C24), C2.119(C22.36C24), (C2×C4).237(C4○D4), (C2×C4⋊C4).506C22, C22.557(C2×C4○D4), (C2×C22⋊C4).78C22, SmallGroup(128,1528)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 452 in 217 conjugacy classes, 88 normal (82 characteristic)
C1, C2 [×7], C2 [×3], C4 [×15], C22 [×7], C22 [×17], C2×C4 [×4], C2×C4 [×41], D4 [×4], C23, C23 [×2], C23 [×13], C42 [×2], C22⋊C4 [×15], C4⋊C4 [×11], C22×C4 [×13], C22×C4 [×3], C2×D4 [×5], C24 [×2], C2.C42 [×12], C2×C42 [×2], C2×C22⋊C4 [×11], C2×C4⋊C4 [×8], C23×C4, C22×D4, C23.8Q8 [×2], C23.23D4, C23.63C23 [×2], C24.C22 [×2], C23.65C23, C24.3C22, C23.10D4, C23.11D4 [×3], C23.4Q8, C23.83C23, C24.455C23
Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], C4○D4 [×6], C24, C2×C4○D4 [×3], 2+ (1+4) [×3], 2- (1+4), C22.33C24 [×2], C22.36C24, C22.45C24, C22.47C24, C22.53C24, C22.54C24, C24.455C23
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=d, f2=b, g2=bcd, faf-1=ab=ba, ac=ca, ad=da, eae-1=abc, ag=ga, bc=cb, bd=db, fef-1=be=eb, bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd >
(1 43)(2 28)(3 41)(4 26)(5 58)(6 19)(7 60)(8 17)(9 13)(10 54)(11 15)(12 56)(14 50)(16 52)(18 62)(20 64)(21 25)(22 42)(23 27)(24 44)(29 35)(30 38)(31 33)(32 40)(34 48)(36 46)(37 45)(39 47)(49 53)(51 55)(57 61)(59 63)
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 43 11 15)(2 16 12 44)(3 41 9 13)(4 14 10 42)(5 20 38 48)(6 45 39 17)(7 18 40 46)(8 47 37 19)(21 25 49 53)(22 54 50 26)(23 27 51 55)(24 56 52 28)(29 33 57 63)(30 64 58 34)(31 35 59 61)(32 62 60 36)
(1 29 21 47)(2 18 22 60)(3 31 23 45)(4 20 24 58)(5 26 64 44)(6 15 61 53)(7 28 62 42)(8 13 63 55)(9 59 51 17)(10 48 52 30)(11 57 49 19)(12 46 50 32)(14 40 56 36)(16 38 54 34)(25 39 43 35)(27 37 41 33)
G:=sub<Sym(64)| (1,43)(2,28)(3,41)(4,26)(5,58)(6,19)(7,60)(8,17)(9,13)(10,54)(11,15)(12,56)(14,50)(16,52)(18,62)(20,64)(21,25)(22,42)(23,27)(24,44)(29,35)(30,38)(31,33)(32,40)(34,48)(36,46)(37,45)(39,47)(49,53)(51,55)(57,61)(59,63), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,43,11,15)(2,16,12,44)(3,41,9,13)(4,14,10,42)(5,20,38,48)(6,45,39,17)(7,18,40,46)(8,47,37,19)(21,25,49,53)(22,54,50,26)(23,27,51,55)(24,56,52,28)(29,33,57,63)(30,64,58,34)(31,35,59,61)(32,62,60,36), (1,29,21,47)(2,18,22,60)(3,31,23,45)(4,20,24,58)(5,26,64,44)(6,15,61,53)(7,28,62,42)(8,13,63,55)(9,59,51,17)(10,48,52,30)(11,57,49,19)(12,46,50,32)(14,40,56,36)(16,38,54,34)(25,39,43,35)(27,37,41,33)>;
G:=Group( (1,43)(2,28)(3,41)(4,26)(5,58)(6,19)(7,60)(8,17)(9,13)(10,54)(11,15)(12,56)(14,50)(16,52)(18,62)(20,64)(21,25)(22,42)(23,27)(24,44)(29,35)(30,38)(31,33)(32,40)(34,48)(36,46)(37,45)(39,47)(49,53)(51,55)(57,61)(59,63), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,43,11,15)(2,16,12,44)(3,41,9,13)(4,14,10,42)(5,20,38,48)(6,45,39,17)(7,18,40,46)(8,47,37,19)(21,25,49,53)(22,54,50,26)(23,27,51,55)(24,56,52,28)(29,33,57,63)(30,64,58,34)(31,35,59,61)(32,62,60,36), (1,29,21,47)(2,18,22,60)(3,31,23,45)(4,20,24,58)(5,26,64,44)(6,15,61,53)(7,28,62,42)(8,13,63,55)(9,59,51,17)(10,48,52,30)(11,57,49,19)(12,46,50,32)(14,40,56,36)(16,38,54,34)(25,39,43,35)(27,37,41,33) );
G=PermutationGroup([(1,43),(2,28),(3,41),(4,26),(5,58),(6,19),(7,60),(8,17),(9,13),(10,54),(11,15),(12,56),(14,50),(16,52),(18,62),(20,64),(21,25),(22,42),(23,27),(24,44),(29,35),(30,38),(31,33),(32,40),(34,48),(36,46),(37,45),(39,47),(49,53),(51,55),(57,61),(59,63)], [(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,43,11,15),(2,16,12,44),(3,41,9,13),(4,14,10,42),(5,20,38,48),(6,45,39,17),(7,18,40,46),(8,47,37,19),(21,25,49,53),(22,54,50,26),(23,27,51,55),(24,56,52,28),(29,33,57,63),(30,64,58,34),(31,35,59,61),(32,62,60,36)], [(1,29,21,47),(2,18,22,60),(3,31,23,45),(4,20,24,58),(5,26,64,44),(6,15,61,53),(7,28,62,42),(8,13,63,55),(9,59,51,17),(10,48,52,30),(11,57,49,19),(12,46,50,32),(14,40,56,36),(16,38,54,34),(25,39,43,35),(27,37,41,33)])
Matrix representation ►G ⊆ GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 2 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
2 | 0 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(6,GF(5))| [4,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,2,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[2,3,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 4A | ··· | 4P | 4Q | ··· | 4U |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 8 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | C4○D4 | 2+ (1+4) | 2- (1+4) |
kernel | C24.455C23 | C23.8Q8 | C23.23D4 | C23.63C23 | C24.C22 | C23.65C23 | C24.3C22 | C23.10D4 | C23.11D4 | C23.4Q8 | C23.83C23 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 8 | 4 | 3 | 1 |
In GAP, Magma, Sage, TeX
C_2^4._{455}C_2^3
% in TeX
G:=Group("C2^4.455C2^3");
// GroupNames label
G:=SmallGroup(128,1528);
// by ID
G=gap.SmallGroup(128,1528);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,120,758,723,604,1571,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d,f^2=b,g^2=b*c*d,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,a*g=g*a,b*c=c*b,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d>;
// generators/relations